
Rotor Design and Vibration Response

Bearing alternating response, the latest rotor design tool, allows
measurement of the forces transmitted to other parts of the machinery
and foundation, and also indicates the degree of rotor sensitivity to
unbalance.

F.L. Weaver
De Laval Turbine Inc.,

Trenton, N.J.

The smooth operation of a rotor is of interest to all those
concerned with the design, purchase, or use of these
components. The values of critical speeds, or the speed
ranges in which critical speeds are prohibited, are
commonly specified in machinery purchase orders. It is the
purpose of this article to present performance data on a
simple shaft which will lead to better fundamental
understanding of the various factors effecting rotor
performance and their relative value or influence.

Figure 1 illustrates the effect of weight distribution in
the mid span of the rotor. All critical speed values are for a
72 in. long x 6 in. dia. shaft on very stiff supports having a
spring gradient of 109 lb./in. The results for the uniform
shaft, Figure 1-a, gives a value of the ratio of second to first
critical of 4.0. This is the true value of this ratio for any
size uniform shaft on rigid supports. However, it can be
radically different for various weight distributions within
the rotor span.

A single wheel located at the shaft mid span, Figure 1-b,
will have maximum effect in lowering the first critical
speed, but will have minimal effect on the second critical
speed since the wheel is located at the shaft node for the
second critical. The ratio of second to first critical is 5.62,
for the 280 Ib. weight which has been used in this example.
The change in speed ratio from 4.0 to 5.62 is due to
reduction in first critical alone since there was no change in
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Critical Speeds
1st RPM 2nd RPM Ratio 2nd/ 1st

5,516 22,058 4.00

3,921 22,057 5.62

4,194 16,670 3.98

4,943 16,677 3.38

Figure 1. Effect of mid-span weight location of critical
speed.

second critical. This simple case assumed a dimensionless
point weight for the wheel at mid span. It is apparent from
this example that by changing the amount of weight at
center span it is theoretically possible to make the ratios of
second to first critical any desired value greater than 4.0.

Two equal weights placed at one-third span, Figure 1-c,
have approximately the same effect on both first and
second criticals so that the ratio of second to first critical
remains approximately constant at 4.0, regardless of the
amount of weight which is placed equally at these two
locations.

The last example, Figure 1-d, iËustrates the effect of
locating equal weights at one quarter span. This is the
anti-node for the shaft second critical, and weight placed at
this location has maximum effect in reducing the second
critical speed relative to the reduction in first critical speed.
Equal weights at this location give the smallest ratio of
second to first critical.

In the practical design of most rotors, both the weight
and location of the wheels on the shaft are determined by
other considerations thatn critical speed placement. The
examples which have been given are to demonstrate the
types of changes in critical speed relationships that can be
produced by variation in weight size and location between
the two bearing supports.
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Figure 2. Effect of overhung weight on critical speed.
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Overhung weight

Whereas the mid span weight may either raise or lower
the ratio of second to first critical, the effect of the
overhung weight is only to reduce this ratio. Figure 2
illustrates the effect caused by various amounts 40 Ib.
weight overhung on the same shaft and supports used in
Figure 1. With increased overhang, there is significant
reduction in first critical speed, such that with a 24 in.
overhang the ratio of second to first critical has dropped
from 4.0 to a value of only 2.27. A large part of this effect
is due not only to the 40 Ib. weight, but also to the very
substantial overhung weight of the shaft extension itself.
Inertial or gyroscopic effects of the wheel have not been
included in this calculation. This can have a significant
effect to raise the critical speeds if the inertia of the
overhung weight is large compared to the shaft stiffness. It
is apparent that overhung weights can be a major factor in
depressing the second critical speed. In the design of high
speed machinery the amount, location and possible
unbalance of the overhung weight are important
considerations in the design of the rotor.

Figure 3 and 4 show the critical speeds and mode forms
for the simple uniform shaft, and for the uniform shaft
with a 40 Ib. weight on a 24 in. long overhang. This
information is given not for a very stiff .support having a
spring constant, K, equal to 109 lb./in., but also for a very
soft support having K equal to 10s lb./in.

In comparing Figure 3 and 4, it should be noted that the
fifth critical of the overhung shaft, Figure 4, very closely
resembles the fourth critical of the simple shaft, Figure 3,
both in mode form and in value of critical speed. In fact,
this same relation holds true for all the higher mode forms
involving substantial bending in the shaft. At the higher
mode forms, the extra length of the overhang begins to
participate in the same general manner that it would if it
had been included between the bearing supports.

This relationship becomes less obvious with decreasing
critical speed where the shaft has less bending. The two
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Figure 3. Mode shapes for simple uniform shaft for both
stiff and soft supports.
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Figure 4. Mode shapes for shaft with overhung weight for
both stiff and soft supports.

lowest criticals, for both the simple shaft and for the shaft
with the 24 in. overhung weight, have minimum bending
curvature in the shaft. In particular for softer supports, the
shaft at the first two criticals tends to act as a rigid body
with very little bending in the shaft; that is, the value of the
critical speeds approach that of a simple mass on supporting
springs. It could, therefore, be expected that the value of
these two lower criticals would be especially susceptible to
support stiffness. Likewise, it can be expected that
changing shaft stiffness will have minimum effect on the
first two critical speeds if the support structure is very soft.

Support stiffness — spring gradient

Figure 5 shows the relation of critical speeds to support
stiffness for the simple uniform shaft. This curve illustrates
the fact deduced from the mode shapes; namely, that the
first two criticals are much more strongly influenced by
support stiffness than are the higher criticals which involve
greater bending curvature in the shaft. The support stiffness
is expressed as an equivalent spring with a spring gradient of
K lb./in., at each bearing location. In the case of an actual
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Figure 5. Effect of support spring gradient on critical
speeds.
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Figure 6. Typical spring gradients for a pivoted shoe journal
bearing at 10,000 rev./min.
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Figure 7. Spring gradients for 30 in. tall solid cylinders of
steel on an infinitely stiff support.
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Figure 8. Spring gradients for 10 ft. long wide flange beams
on an infinitely stiff support.

rotor, the equivalent support sitffness, K, is influenced by
both bearing oil film stiffness and the stiffness of the
supporting structure.

Typical values of spring gradient of the oil film of a
pivoted shoe journal bearing are given in Figure 6. The oil
film spring gradient is a function of details of bearing
design, speed, oil viscosity, and bearing loading. For other
variables held constant, which is usually the case in
machinery design, the spring gradient of the oil film
increases markedly as the loading on the bearing is
increased from 50- to 250 lb./sq. in. on bearing projected
area. Approximately a 5 to 1 increase in bearing oil film
stiffness is obtained for a given bearing design simply by
increasing the bearing loading from 50- to 150 lb./sq. in. A
further increase in loading to 250 lb./sq. in. would gain
about 2 to 1 more in oil film stiffness. Most high speed
machinery design is faced with the problem of trying to
increase, rather than decrease, rotor critical speeds. The
curve in Figure 6 indicates that maximum values of oil film
stiffness and, therefore, of rotor critical speeds are
obtainable at the higher bearing loadings.

The stiffness of supporting structures is usually obtained
only by complex analysis or by direct measurement.
However, in order to give an order of magnitude feel for the
meaning of the spring gradients which may be used in rotor
response calculations, simple examples are given in Figures
7 and 8. Figure 7 shows spring gradients for four different
diameter solid steel cylinders resting on infinitely stiff
supports. It is apparent from the 30 in. high solid steel
cylinders in Figure 7 that a spring gradient as high as K =
109 lb./in., or as low as K = 10s lb./in., are not likely to be
found in practical construction. Figure 8 indicates that a 36
in. x 12 in. x 10 ft. long wide flange beam weighing 194
lb./ft. and resting on an infinitely stiff foundation would
have a spring gradient of only about 107 lb./in. An 18 in. x
8-3/4 in. wide flange would have a spring gradient of 106

lb./in., and a 1-0 in. x 5-3/4 in. wide flange would have a
gradient of only 105 lb./in. These numbers indicate
the problem of designing steel supporting structures to give
good machinery operation. They also indicate one reason
why the machinery manufacturer always expresses a
preference for a reinforced concrete foundation. These
examples, of course, greatly oversimplify the real life
problem of structures in order to illustrate the general
significance of spring gradient numbers.

Rotor response

The latest design tool for rotors is the analytical ability
to predict the response of a rotating rotor to the influence
of an unbalance. Figure 9 shows, for a simple uniform
rotor, a plot against speed of the alternating force at the
bearing nearest the unbalance. In this example, the
unbalance is placed at the quarter point between the
supports in order to effectively excite the first and second
criticals and somewhat less effectively excite higher
criticals. The alternating bearing loading is shown for three
different values of support stiffness, K. All cases are for the
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Figure 9. Unbalance response of a uniform simple shaft
excited at quarter point.
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Figure 10. Unbalance response of a shaft with overhung
weight excited at the overhang.

same damping. C = 170 lb.-sec./in. This damping value is
considerably lower than will be found in normal design, and
was chosen so that the unbalance effect at the resonant
speeds would be amplified more than normal for this study.
This plot, showing alternating load on the bearing, is
indicative not only of the duty imposed on the bearing, but
is also an indirect measure of the forces which may be
transmitted to other parts of the machine and its
supporting structure. The plot also contains the
information for vibration amplitude, which is a more
common form of shafting performance evaluation. Bearing
loading is equal to the vectorial sum of damping force, plus
spring force. For a first approximation it is sufficient to
consider only the spring force, in which case, bearing
loading is approximately equal to the product of vibration
amplitude and spring gradient. It is, therefore, possible to
have an evaluation of vibration amplitude from the curves
which give bearing loading. For example, at the first critical
speed of Figure 9, the shaft vibration amplitude with the
softest spring support is almost five times as much as with
the stiffest spring support even though the alternating
bearing loadings are about the same for either of the spring
gradients.

A dotted line is shown on Figure 9 to represent the
centrifugal force due to the unbalance. The degree of
sensitivity to unbalance of a given design can be evaluated
not only in terms of the bearing loading, but also in terms
of amplification of the loading. For example, with the 0.7 x
106 spring gradient the amplification at the second critical
is only 1.26, which is a very low value. With the 2.0 x 106

spring gradient the amplification is 6.8, indicating a
somewhat sensitive rotor when operating at the resonant
speed. The amplification at first critical is about 10 which
indicates an even greater response to unbalance. These
relatively high amplifications are to be expected, however,
because of the low value of damping used for these
calculations.

A similar type example is given in Figure 10 for the
simple shaft with the 40 Ib. weight on the 24 in. long

overhang. In this case, the same unbalance, as used in the
previous case, is assumed to be at the end of the shaft
overhang. The bearing loadings, and particularly the
amplification, is worse at the second critical speeds than in
the previous case. This demonstrates in a different manner
the importance of the overhung weight in its effect on the
location of the second and higher criticals, but it also
indicates the additional vibration amplitude that may be
generated by alternating forces at this location, not only by
unbalance, but also by other alternating forces such as
those that might be due to coupling misalignment.

The previous examples have shown a general increase in
rotor response with speed. This is not surprising considering
that the centrifugal force due to the unbalance increases as
the square of the speed. The examination of actual rotor
performance does not always indicate a greater rotor
response at increased speed. The curves shown on Figure 11
have been drawn to illustrate one reason why this is so. The
overhung shaft for this example has been reduced in length
to 12 in. and design variation is accomplished by changing
shaft overhang diameter. The factors of spring constant and
damping coefficient are held constant. The same unbalance
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Figure 11. Unbalance response of a shaft for various
diameter overhangs.
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is used as in previous case, and it is at the end of the
overhang. The smallest sized shaft, 1-7/8 in. dia., was
selected to tune the natural frequency of the cantilevered
overhang to the first natural frequency of the shaft. It will
be seen that this design shows a major peak at the first
critical with below normal response at higher speeds. The
intermediate size shaft, 3-1/4 in. dia., was selected to tune
the overhang to the second critical of the system. This
design shows an increased sensitivity and response at the
second critical and only normal response at the first critical.
The larger 6 in. dia. shaft is the same as has been used in
previous examples, and is included as a base for comparison
purposes. Since there is little damping in the rotor material
itself, and all damping is assumed to be in the bearing oil
film, the system réponses become sharper and more
pronounced as the hypothetical natural frequency of the
cantilevered overhang becomes more closely tuned to the
overall system natural frequencies. This is more reason why
relatively small changes in overhang distance or weight in
some cases cause major changes in rotor response.

Figure 12. Model rotor testing for dynamic response due to
unbalance.

Damping and testing

Damping in oil lubricated bearings is an important factor
in the consideration of rotor behavior. Increased damping
tends to increase the critical speeds of the rotor. This is
usually a small factor. Increased damping also tends to
decrease the amplitude of vibration, and, therefore, the
alternating bearing loading. In systems where the
amplification is large, the response of the system at
resonance will vary approximately inversely with damping.
For example, the peak bearing loading given in Figure 9 for
K = 2.0 106 lb./in. would reduce from 4,900- to 2,400 Ib. if
the bearing damping were increased from 170- to 340
lb.-sec./in. Under some conditions, the damping will tend to
eliminate the vibration peak which is normally associated
with a critical speed. This is what happens to the rotor
response for K = 0.7 x 106 in Figure 9 when the bearing
damping is increased from 170- to 340 Ib .-sec/in. The peak
response at the second critical is eliminated with this
increase in damping.

Values of bearing damping may be expected to be from
about 300- to 800 lb.-sec./in. with the usual bearing designs
and oil viscosities common to high-speed rotating
equipment. The values of damping used in this study have
purposefully been made lower than would be expected in
actual practice in order to emphasize the effect of other
variables in the design.

Testing is required to correlate analysis with experience.
Although correlation of the performance of actual rotors
with predictions is the most meaningful type of
information, the testing of models has a useful function.
The arrangement in Figure 12 shows a steam turbine driving
a high-speed model test rotor through a step up gear.
Instrumentation is placed at five locations along the length
of the shaft, and simultaneous recordings can be made of
the shaft performance as speed or other system variables are

changed.
The speed-vibration traces shown in Figure 13 are one

type of useful information which can be obtained from this
type of testing. Phase angles along the shaft may also be
obtained and the shaft mode forms may be determined to
compare with prediction. This type of testing is most useful
in comparing performance for differences in design detail of
the rotor system, such as different bearing designs.

It is expected that continued work in the field of rotor
dynamics, both analytically and experimentally, will bring
increased accuracy to the prediction of rotor vibration
response. The entire field of support structure response,
including the effect of both structure mass and stiffness, is
largely in the formative stage. Most information available
on this subject is a matter of experience rather loosely
correlated through oversimplified models. There is a need
for continued work in this field.
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Figure 13. Rotor vibration response due to unbalance.
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Summary

The vibration response of a rotor is dependent not only
on the design variables of the rotor itself, but also on the
equivalent stiffness and damping of the rotor support
structure. The shaft extension beyond the bearings and the
overhang weight on this extension is an important design
factor in the determination of the vibration response of
high speed rotors.

Bearing alternating load is a useful measure of rotor
response. It gives a measure of the forces transmitted to
other parts of the machinery and foundation, and indicates
the degree of sensitivity of the rotor to unbalance.
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